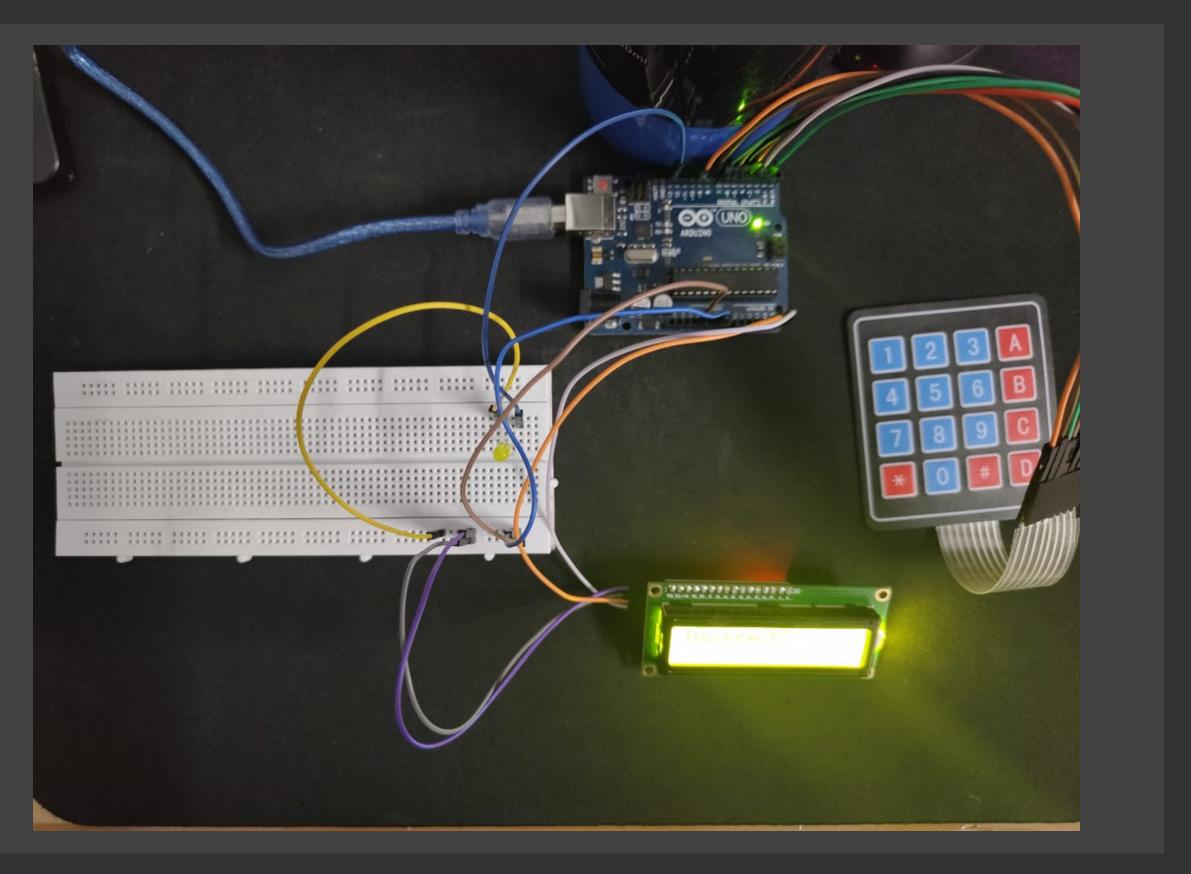

OVERVIEW Reflexes and Memory Test

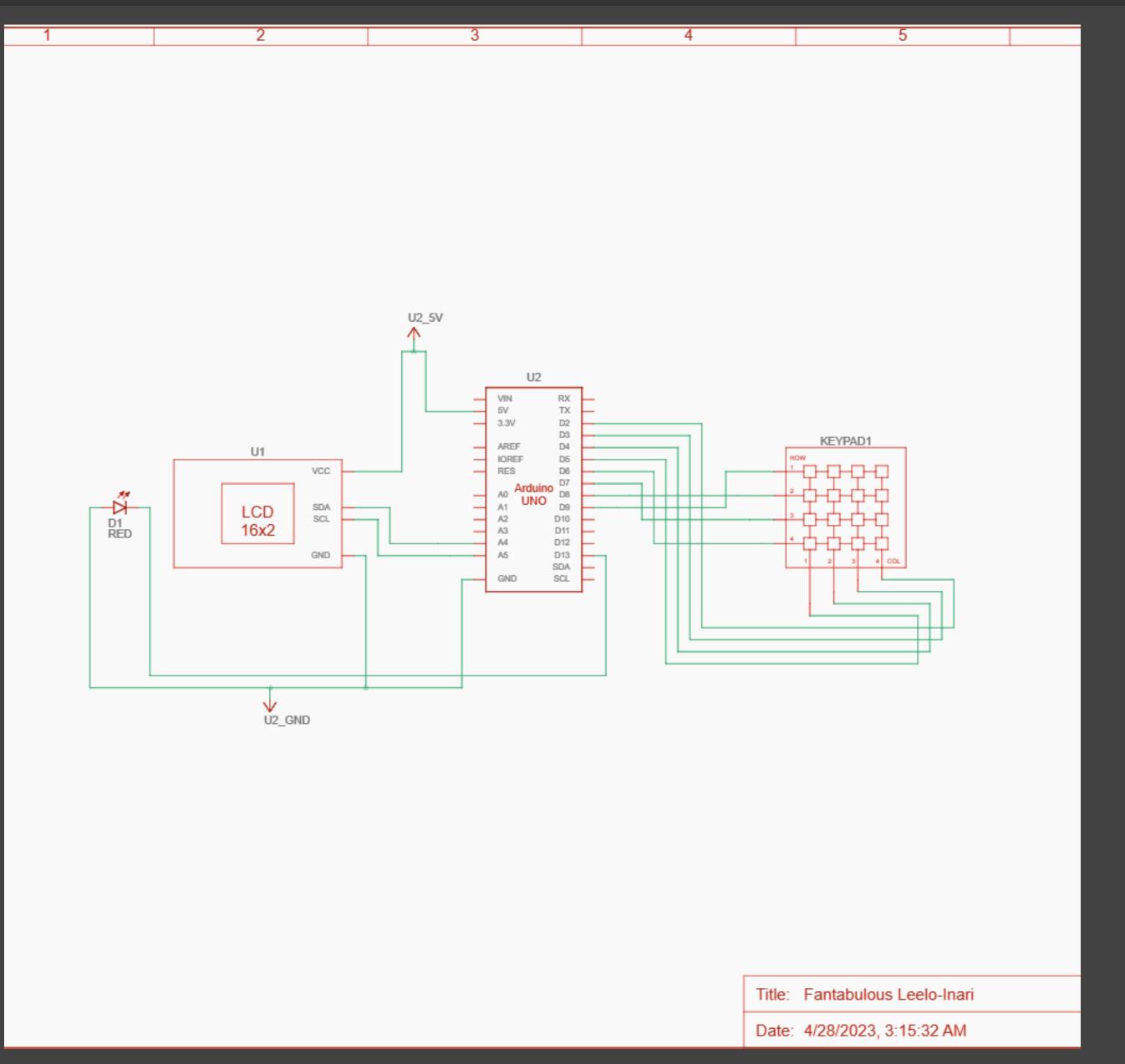
Simple test of memory and reflexes using an LED, a keypad and an I2C display.

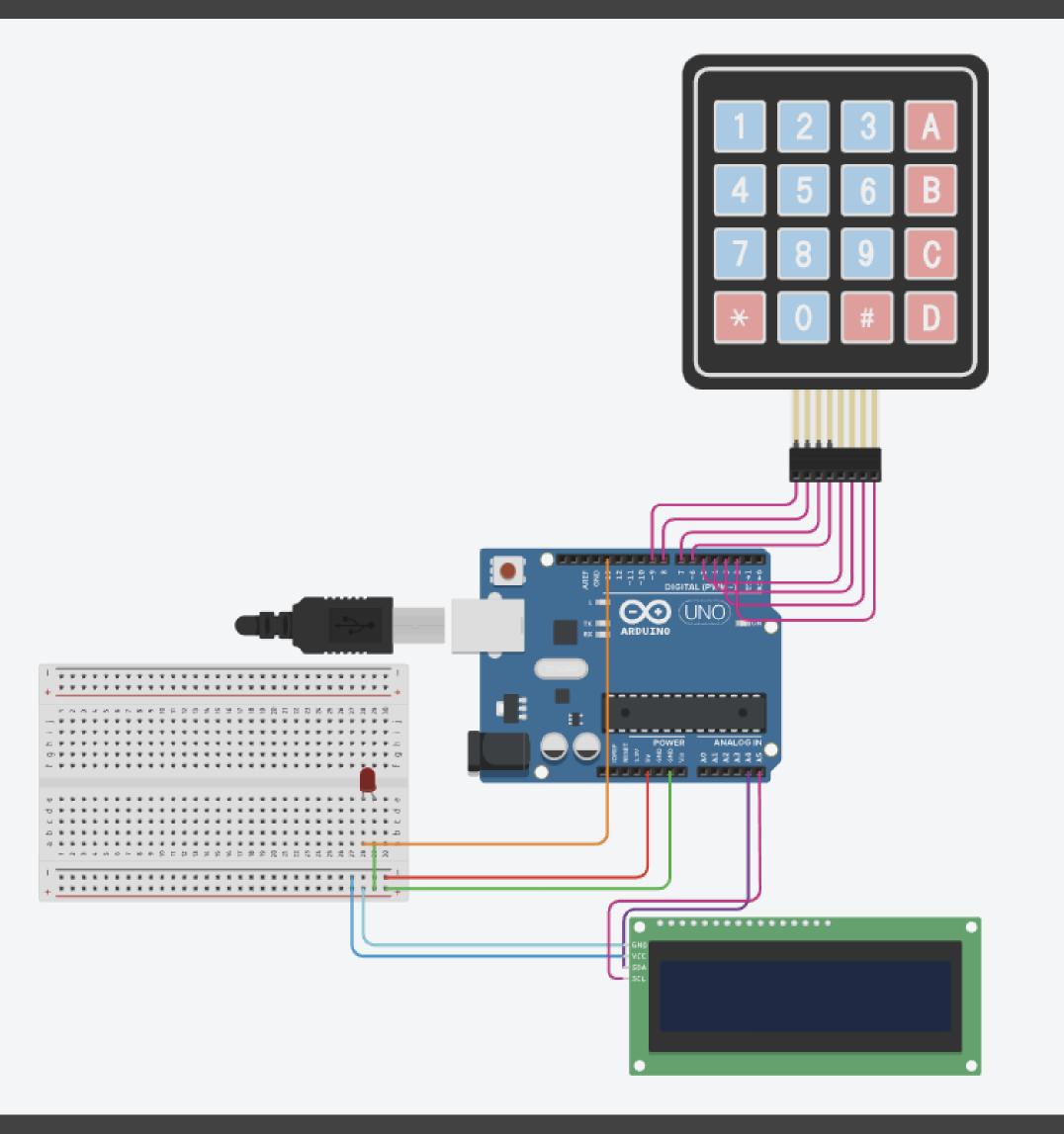
The rules of the game are simple, the user has to observe and memorize an LED blinking a random number of times and enter it through the keypad

OVERVIEW The Circuit


LED

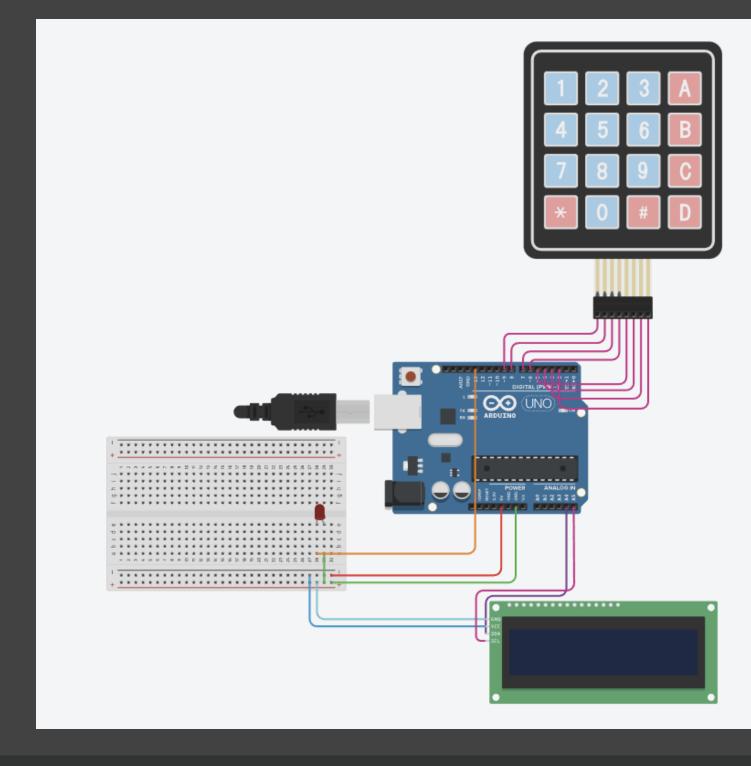
The circuit combines 3 components


- LED Blinks random number of times. (Range of 1-15)
- I2C LCD Display For feedback on inputs
- Keypad For inputting values/ answer



OVERVIEW The Circuit

OVERVIEW



OVERVIEW

OVERVIEW Wiring

The wiring in the circuit has an LED, with pins connected to the board at 13, a keypad connected to the board at slots 9-6 (R1-R4) and 5-2 (C1-C4), and an I2C display.

It involves integration of the three components to generate a memorable experience for the user and test their memory's limits.

The Code for the circuit follows the following basic logic guidelines:

- Initialize the LED, LCD display, and keypad objects.
- Define a function to read and return a number from the keypad
- Define a function to blink the LED a random number of times.
- In the setup() function, initialize the pins and display a welcome message on the LCD display.
- In the loop() function, call the blinkRandom() function to blink the LED a random number of times and call the getNumber() function to read the number from the keypad.
- If the number entered by the user matches the blink count, display a success message on the LCD display.
 Otherwise, display a failure message.
- Wait for a few seconds before starting the loop again.

sketch_apr13a.ino

```
#include <Wire.h>
      #include <LiquidCrystal_I2C.h>
       #include <Keypad.h>
       LiquidCrystal_I2C lcd(0x27, 16, 2);
       const byte ROWS = 4;
       const byte COLS = 4;
      char keys[ROWS][COLS] = {
        {'1', '2', '3', 'A'},
        {'4', '5', '6', 'B'},
 10
        {'7', '8', '9', 'C'},
 11
        { '*', '0', '#', 'D'}
 12
 13
       };
      byte rowPins[ROWS] = {9, 8, 7, 6};
 14
       byte colPins[COLS] = {5, 4, 3, 2};
       Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);
 16
 17
       const int ledPin = 13;
 18
       int blinkCount = 0;
 19
 20
      void setup() {
 21
        lcd.begin();
 22
 23
        lcd.backlight();
        pinMode(ledPin, OUTPUT);
 24
        randomSeed(analogRead(0));
 25
 26
        blinkRandom();
 27
      void loop() {
 28
 29 char key = keypad.getKey();
 30 if (key == '#') {
31 lcd.clear();
```

The Code for the circuit follows the following basic logic guidelines:

- Initialize the LED, LCD display, and keypad objects.
- Define a function to read and return a number from the keypad
- Define a function to blink the LED a random number of times.
- In the setup() function, initialize the pins and display a welcome message on the LCD display.
- In the loop() function, call the blinkRandom() function to blink the LED a random number of times and call the getNumber() function to read the number from the keypad.
- If the number entered by the user matches the blink count, display a success message on the LCD display. Otherwise, display a failure message.
- Wait for a few seconds before starting the loop again.

28	\sim	<pre>void loop() {</pre>
29		<pre>char key = keypad.getKey();</pre>
30	\sim	if (key == '#') {
31		<pre>lcd.clear();</pre>
32		<pre>lcd.setCursor(0, 0);</pre>
33		<pre>lcd.print("Please Wait");</pre>
34		<pre>lcd.setCursor(0, 1);</pre>
35		
36		delay(1000);
37	\sim	<pre>if (blinkCount == getNumber()) {</pre>
38		<pre>lcd.clear();</pre>
39		<pre>lcd.setCursor(0, 0);</pre>
40		<pre>lcd.print("Correct!");</pre>
41	\sim	} else {
42		<pre>lcd.clear();</pre>
43		<pre>lcd.setCursor(0, 0);</pre>
44		<pre>lcd.print("Incorrect!");</pre>
45		}
46		delay(1000);
47		<pre>blinkRandom();</pre>
48		}
49		}
50	\sim	<pre>int getNumber() {</pre>
51		<pre>int number = 0;</pre>
52		<pre>char key = keypad.getKey();</pre>
53		<pre>lcd.clear();</pre>
54		<pre>lcd.setCursor(0, 0);</pre>
55		<pre>lcd.print("Enter number:");</pre>
56	\sim	while (key != '#') {
57	\sim	if (key >= '0' && key <= '9') {
58		number = number * 10 + (key - '0'

The Code for the circuit follows the following basic logic guidelines:

- Initialize the LED, LCD display, and keypad objects.
- Define a function to read and return a number from the keypad
- Define a function to blink the LED a random number of times.
- In the setup() function, initialize the pins and display a welcome message on the LCD display.
- In the loop() function, call the blinkRandom() function to blink the LED a random number of times and call the getNumber() function to read the number from the keypad.
- If the number entered by the user matches the blink count, display a success message on the LCD display. Otherwise, display a failure message.
- Wait for a few seconds before starting the loop again.

50 \vee int getNumber() { int number = 0; 51 char key = keypad.getKey(); 52 lcd.clear(); 53 lcd.setCursor(0, 0); 54 lcd.print("Enter number:"); 55 while (key != '#') { 56 🗸 if (key >= '0' && key <= '9') { 57 🗸 number = number * 10 + (key - '0');58 lcd.setCursor(0, 1); 59 "); lcd.print(" 60 lcd.setCursor(0, 1); 61 lcd.print(number); 62 key = keypad.getKey(); 63 64 65 return number; 66 67 68 69 void blinkRandom() { blinkCount = random(1, 15); 70 for (int i = 0; i < blinkCount; i++) {</pre> 71 \sim digitalWrite(ledPin, HIGH); 72 delay(250); 73 digitalWrite(ledPin, LOW); 74 75 delay(250); 76 77

sketch_apr13a.ino	28 ∨ void loo
1 #include <wire.h></wire.h>	29 char k
2 #include <liquidcrystal_i2c.h></liquidcrystal_i2c.h>	30 ∨ if (ke
3 #include <keypad.h></keypad.h>	31 lcd.
4	32 lcd.
5 LiquidCrystal_I2C lcd(0x27, 16, 2);	33 lcd.
6 const byte ROWS = 4;	34 lcd.
7 const byte COLS = 4;	35
8 char keys[ROWS][COLS] = {	36 dela
9 {'1', '2', '3', 'A'},	37 ∨ if (
10 {'4', '5', '6', 'B'},	38 lc
11 {'7', '8', '9', 'C'},	39 lc
12 {'*', '0', '#', 'D'}	40 lc
13 };	41 ∨ }el
14 byte rowPins[ROWS] = {9, 8, 7, 6};	42 lc
15 byte colPins[COLS] = {5, 4, 3, 2};	43 lc
<pre>16 Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);</pre>	44 lc
17	45
18 const int ledPin = 13;	46 dela
19 int blinkCount = 0;	47 blin
20	48 }
21 void setup() {	49 }
22 lcd.begin();	50 ∨ int getN
23 lcd.backlight();	51 int nu
24 pinMode(ledPin, OUTPUT);	52 char k
<pre>25 randomSeed(analogRead(0));</pre>	53 lcd.cl
26 blinkRandom();	54 lcd.se
27	
28 void loop() {	55 lcd.pr
29 char key = keypad.getKey();	56 ∨ while
30 if (key == '#') {	57 V if (
31 lcd.clear():	58 nu

```
op() {
key = keypad.getKey();
ey == '#') {
.clear();
.setCursor(0, 0);
.print("Please Wait...");
.setCursor(0, 1);
```

```
ay(1000);
(blinkCount == getNumber()) {
.cd.clear();
.cd.setCursor(0, 0);
.cd.print("Correct!");
else {
.cd.clear();
.cd.setCursor(0, 0);
.cd.print("Incorrect!");
```

```
ay(1000);
nkRandom();
```

```
Number() {
umber = 0;
key = keypad.getKey();
lear();
etCursor(0, 0);
rint("Enter number:");
(key != '#') {
(key != '#') {
umber = number * 10 + (key - '0');
```

```
50 \vee int getNumber() {
         int number = 0;
  51
          char key = keypad.getKey();
  52
         lcd.clear();
  53
         lcd.setCursor(0, 0);
  54
          lcd.print("Enter number:");
  55
  56 🗸
         while (key != '#') {
          if (key >= '0' && key <= '9') {
  57 🗸
             number = number * 10 + (key - '0');
  58
             lcd.setCursor(0, 1);
  59
                                        ");
             lcd.print("
  60
             lcd.setCursor(0, 1);
  61
             lcd.print(number);
  62
           key = keypad.getKey();
  63
  64
  65
         return number;
  66
  67
  68
  69 void blinkRandom() {
          blinkCount = random(1, 15);
  70
         for (int i = 0; i < blinkCount; i++) {</pre>
  71 \sim
           digitalWrite(ledPin, HIGH);
  72
           delay(250);
  73
           digitalWrite(ledPin, LOW);
  74
  75
           delay(250);
  76
77
```


DEMO https://youtu.be/CbPb2CVxdRU

https://github.com/shagore/ard4/blob/main/assignment4.ino

Source Code